Java 8 (又称为 jdk 1.8) 是 Java 语言开发的一个主要版本。 Oracle 公司于 2014 年 3 月 18 日发布 Java 8 ,它支持函数式编程,新的 JavaScript 引擎,新的日期 API,新的Stream API 等。


Lambda 表达式

Lambda 表达式,也可称为闭包,它是推动 Java 8 发布的最重要新特性。

Lambda 允许把函数作为一个方法的参数(函数作为参数传递进方法中)。

使用 Lambda 表达式可以使代码变的更加简洁紧凑。

语法

1
2
3
(parameters) -> expression

(parameters) ->{ statements; }

以下是lambda表达式的重要特征:

  • 可选类型声明:不需要声明参数类型,编译器可以统一识别参数值。
  • 可选的参数圆括号:一个参数无需定义圆括号,但多个参数需要定义圆括号。
  • 可选的大括号:如果主体包含了一个语句,就不需要使用大括号。
  • 可选的返回关键字:如果主体只有一个表达式返回值则编译器会自动返回值,大括号需要指定表达式返回了一个数值。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
public class Java8Tester {
public static void main(String args[]){
Java8Tester tester = new Java8Tester();

// 类型声明
MathOperation addition = (int a, int b) -> a + b;

// 不用类型声明
MathOperation subtraction = (a, b) -> a - b;

// 大括号中的返回语句
MathOperation multiplication = (int a, int b) -> { return a * b; };

// 没有大括号及返回语句
MathOperation division = (int a, int b) -> a / b;

System.out.println("10 + 5 = " + tester.operate(10, 5, addition));
System.out.println("10 - 5 = " + tester.operate(10, 5, subtraction));
System.out.println("10 x 5 = " + tester.operate(10, 5, multiplication));
System.out.println("10 / 5 = " + tester.operate(10, 5, division));

// 不用括号
GreetingService greetService1 = message ->
System.out.println("Hello " + message);

// 用括号
GreetingService greetService2 = (message) ->
System.out.println("Hello " + message);

greetService1.sayMessage("Runoob");
greetService2.sayMessage("Google");
}

interface MathOperation {
int operation(int a, int b);
}

interface GreetingService {
void sayMessage(String message);
}

private int operate(int a, int b, MathOperation mathOperation){
return mathOperation.operation(a, b);
}
}

使用 Lambda 表达式需要注意以下两点:

  • Lambda 表达式主要用来定义行内执行的方法类型接口(例如,一个简单方法接口)。在上面例子中,我们使用各种类型的 Lambda 表达式来定义 MathOperation 接口的方法,然后我们定义了 operation 的执行。
  • Lambda 表达式免去了使用匿名方法的麻烦,并且给予 Java 简单但是强大的函数化的编程能力。


函数式接口

  • 只包含一个抽象方法(Single Abstract Method,简称SAM)的接口,称为函数式接口。当然该接口可以包含其他非抽象方法。
  • 你可以通过 Lambda 表达式来创建该接口的对象。(若 Lambda 表达式抛出一个受检异常(即:非运行时异常),那么该异常需要在目标接口的抽象方法上进行声明)。
  • 我们可以在一个接口上使用 @FunctionalInterface 注解,这样做可以检查它是否是一个函数式接口。同时 javadoc 也会包含一条声明,说明这个接口是一个函数式接口。
  • java.util.function包下定义了Java 8 的丰富的函数式接口


常用接口

函数式接口 称谓 参数类型 用途
Consumer<T> 消费型接口 T 对类型为T的对象应用操作,包含方法: void accept(T t)
Supplier<T> 供给型接口 返回类型为T的对象,包含方法:T get()
Function<T, R> 函数型接口 T 对类型为T的对象应用操作,并返回结果。结果是R类型的对象。包含方法:R apply(T t)
Predicate<T> 判断型接口 T 确定类型为T的对象是否满足某约束,并返回 boolean 值。包含方法:boolean test(T t)

类型1:消费型接口

消费型接口的抽象方法特点:有形参,但是返回值类型是void

接口名 抽象方法 描述
BiConsumer void accept(T t, U u) 接收两个对象用于完成功能
DoubleConsumer void accept(double value) 接收一个double值
IntConsumer void accept(int value) 接收一个int值
LongConsumer void accept(long value) 接收一个long值
ObjDoubleConsumer void accept(T t, double value) 接收一个对象和一个double值
ObjIntConsumer void accept(T t, int value) 接收一个对象和一个int值
ObjLongConsumer void accept(T t, long value) 接收一个对象和一个long值

类型2:供给型接口

这类接口的抽象方法特点:无参,但是有返回值

接口名 抽象方法 描述
BooleanSupplier boolean getAsBoolean() 返回一个boolean值
DoubleSupplier double getAsDouble() 返回一个double值
IntSupplier int getAsInt() 返回一个int值
LongSupplier long getAsLong() 返回一个long值

类型3:函数型接口

这类接口的抽象方法特点:既有参数又有返回值

接口名 抽象方法 描述
UnaryOperator T apply(T t) 接收一个T类型对象,返回一个T类型对象结果
DoubleFunction R apply(double value) 接收一个double值,返回一个R类型对象
IntFunction R apply(int value) 接收一个int值,返回一个R类型对象
LongFunction R apply(long value) 接收一个long值,返回一个R类型对象
ToDoubleFunction double applyAsDouble(T value) 接收一个T类型对象,返回一个double
ToIntFunction int applyAsInt(T value) 接收一个T类型对象,返回一个int
ToLongFunction long applyAsLong(T value) 接收一个T类型对象,返回一个long
DoubleToIntFunction int applyAsInt(double value) 接收一个double值,返回一个int结果
DoubleToLongFunction long applyAsLong(double value) 接收一个double值,返回一个long结果
IntToDoubleFunction double applyAsDouble(int value) 接收一个int值,返回一个double结果
IntToLongFunction long applyAsLong(int value) 接收一个int值,返回一个long结果
LongToDoubleFunction double applyAsDouble(long value) 接收一个long值,返回一个double结果
LongToIntFunction int applyAsInt(long value) 接收一个long值,返回一个int结果
DoubleUnaryOperator double applyAsDouble(double operand) 接收一个double值,返回一个double
IntUnaryOperator int applyAsInt(int operand) 接收一个int值,返回一个int结果
LongUnaryOperator long applyAsLong(long operand) 接收一个long值,返回一个long结果
BiFunction R apply(T t, U u) 接收一个T类型和一个U类型对象,返回一个R类型对象结果
BinaryOperator T apply(T t, T u) 接收两个T类型对象,返回一个T类型对象结果
ToDoubleBiFunction double applyAsDouble(T t, U u) 接收一个T类型和一个U类型对象,返回一个double
ToIntBiFunction int applyAsInt(T t, U u) 接收一个T类型和一个U类型对象,返回一个int
ToLongBiFunction long applyAsLong(T t, U u) 接收一个T类型和一个U类型对象,返回一个long
DoubleBinaryOperator double applyAsDouble(double left, double right) 接收两个double值,返回一个double结果
IntBinaryOperator int applyAsInt(int left, int right) 接收两个int值,返回一个int结果
LongBinaryOperator long applyAsLong(long left, long right) 接收两个long值,返回一个long结果

类型4:判断型接口

这类接口的抽象方法特点:有参,但是返回值类型是boolean结果。

接口名 抽象方法 描述
BiPredicate boolean test(T t, U u) 接收两个对象
DoublePredicate boolean test(double value) 接收一个double值
IntPredicate boolean test(int value) 接收一个int值
LongPredicate boolean test(long value) 接收一个long值


引用

Lambda表达式是可以简化函数式接口的变量或形参赋值的语法。而方法引用和构造器引用是为了简化Lambda表达式的。

方法引用

  • 格式:使用方法引用操作符 “::” 将类(或对象) 与 方法名分隔开来。

    • 两个:中间不能有空格,而且必须英文状态下半角输入

    如下三种主要使用情况:

    • 情况1:对象 :: 实例方法名
    • 情况2:类 :: 静态方法名
    • 情况3:类 :: 实例方法名
  • 方法引用使用前提

    要求1:Lambda体只有一句语句,并且是通过调用一个对象的/类现有的方法来完成的

    例如:System.out对象,调用println()方法来完成Lambda体

    ​ Math类,调用random()静态方法来完成Lambda体

    要求2:

    针对情况1:函数式接口中的抽象方法a在被重写时使用了某一个对象的方法b。如果方法a的形参列表、返回值类型与方法b的形参列表、返回值类型都相同,则我们可以使用方法b实现对方法a的重写、替换。

针对情况2:函数式接口中的抽象方法a在被重写时使用了某一个类的静态方法b。如果方法a的形参列表、返回值类型与方法b的形参列表、返回值类型都相同,则我们可以使用方法b实现对方法a的重写、替换。

针对情况3:函数式接口中的抽象方法a在被重写时使用了某一个对象的方法b。如果方法a的返回值类型与方法b的返回值类型相同,同时方法a的形参列表中有n个参数,方法b的形参列表有n-1个参数,且方法a的第1个参数作为方法b的调用者,且方法a的后n-1参数与方法b的n-1参数匹配(类型相同或满足多态场景也可以)

例如:t->System.out.println(t)

​ () -> Math.random() 都是无参

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
public class MethodRefTest {

// 情况一:对象 :: 实例方法
//Consumer中的void accept(T t)
//PrintStream中的void println(T t)
@Test
public void test1() {
Consumer<String> con1 = str -> System.out.println(str);
con1.accept("北京");

System.out.println("*******************");
PrintStream ps = System.out;
Consumer<String> con2 = ps::println;
con2.accept("beijing");
}

//Supplier中的T get()
//Employee中的String getName()
@Test
public void test2() {
Employee emp = new Employee(1001,"Tom",23,5600);

Supplier<String> sup1 = () -> emp.getName();
System.out.println(sup1.get());

System.out.println("*******************");
Supplier<String> sup2 = emp::getName;
System.out.println(sup2.get());

}

// 情况二:类 :: 静态方法
//Comparator中的int compare(T t1,T t2)
//Integer中的int compare(T t1,T t2)
@Test
public void test3() {
Comparator<Integer> com1 = (t1,t2) -> Integer.compare(t1,t2);
System.out.println(com1.compare(12,21));

System.out.println("*******************");

Comparator<Integer> com2 = Integer::compare;
System.out.println(com2.compare(12,3));

}

//Function中的R apply(T t)
//Math中的Long round(Double d)
@Test
public void test4() {
Function<Double,Long> func = new Function<Double, Long>() {
@Override
public Long apply(Double d) {
return Math.round(d);
}
};

System.out.println("*******************");

Function<Double,Long> func1 = d -> Math.round(d);
System.out.println(func1.apply(12.3));

System.out.println("*******************");

Function<Double,Long> func2 = Math::round;
System.out.println(func2.apply(12.6));
}

// 情况三:类 :: 实例方法 (有难度)
// Comparator中的int comapre(T t1,T t2)
// String中的int t1.compareTo(t2)
@Test
public void test5() {
Comparator<String> com1 = (s1,s2) -> s1.compareTo(s2);
System.out.println(com1.compare("abc","abd"));

System.out.println("*******************");

Comparator<String> com2 = String :: compareTo;
System.out.println(com2.compare("abd","abm"));
}

//BiPredicate中的boolean test(T t1, T t2);
//String中的boolean t1.equals(t2)
@Test
public void test6() {
BiPredicate<String,String> pre1 = (s1,s2) -> s1.equals(s2);
System.out.println(pre1.test("abc","abc"));

System.out.println("*******************");
BiPredicate<String,String> pre2 = String :: equals;
System.out.println(pre2.test("abc","abd"));
}

// Function中的R apply(T t)
// Employee中的String getName();
@Test
public void test7() {
Employee employee = new Employee(1001, "Jerry", 23, 6000);


Function<Employee,String> func1 = e -> e.getName();
System.out.println(func1.apply(employee));

System.out.println("*******************");
Function<Employee,String> func2 = Employee::getName;
System.out.println(func2.apply(employee));
}

}


构造器引用

当Lambda表达式是创建一个对象,并且满足Lambda表达式形参,正好是给创建这个对象的构造器的实参列表,就可以使用构造器引用。

格式:类名::new

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import java.util.function.BiFunction;
import java.util.function.Function;

public class Test07 {
public static void main(String[] args) {
Function<Integer, Dog> func1 = Dog::new;
System.out.println(func1.apply(11));
BiFunction<Integer, String, Dog> func2 = Dog::new;
System.out.println(func2.apply(11, "Tom"));
}
}

class Dog {
private int id;
private String name;

public Dog() {

}

public Dog(int id) {
this.id = id;
}

public Dog(int id, String name) {
this.id = id;
this.name = name;
}

@Override
public String toString() {
return "dog{" +
"id=" + id +
", name='" + name + '\'' +
'}';
}
}


数组构造引用

当Lambda表达式是创建一个数组对象,并且满足Lambda表达式形参,正好是给创建这个数组对象的长度,就可以数组构造引用。

格式:数组类型名::new

1
2
3
4
5
6
7
8
9
10
11
public void test4(){
Function<Integer,String[]> func1 = length -> new String[length];
String[] arr1 = func1.apply(5);
System.out.println(Arrays.toString(arr1));

System.out.println("*******************");

Function<Integer,String[]> func2 = String[] :: new;
String[] arr2 = func2.apply(10);
System.out.println(Arrays.toString(arr2));
}


Stream API

什么是Stream

Stream 是数据渠道,用于操作数据源(集合、数组等)所生成的元素序列。

Stream 和 Collection 集合的区别:Collection 是一种静态的内存数据结构,讲的是数据,而 Stream 是有关计算的,讲的是计算。前者是主要面向内存,存储在内存中,后者主要是面向 CPU,通过 CPU 实现计算。

注意:

①Stream 自己不会存储元素。

②Stream 不会改变源对象。相反,他们会返回一个持有结果的新Stream。

③Stream 操作是延迟执行的。这意味着他们会等到需要结果的时候才执行。即一旦执行终止操作,就执行中间操作链,并产生结果。

④ Stream一旦执行了终止操作,就不能再调用其它中间操作或终止操作了。


Stream的操作三个步骤

1- 创建 Stream
一个数据源(如:集合、数组),获取一个流

2- 中间操作
每次处理都会返回一个持有结果的新Stream,即中间操作的方法返回值仍然是Stream类型的对象。因此中间操作可以是个操作链,可对数据源的数据进行n次处理,但是在终结操作前,并不会真正执行。

3- 终止操作(终端操作)
终止操作的方法返回值类型就不再是Stream了,因此一旦执行终止操作,就结束整个Stream操作了。一旦执行终止操作,就执行中间操作链,最终产生结果并结束Stream。

创建Stream实例

方式一:通过集合

Java8 中的 Collection 接口被扩展,提供了两个获取流的方法:

  • default Stream stream() : 返回一个顺序流

  • default Stream parallelStream() : 返回一个并行流

1
2
3
4
5
6
7
@Test
public void test01(){
List<Integer> list = Arrays.asList(1,2,3,4,5);

//JDK1.8中,Collection系列集合增加了方法
Stream<Integer> stream = list.stream();
}

方式二:通过数组

Java8 中的 Arrays 的静态方法 stream() 可以获取数组流:

  • static Stream stream(T[] array): 返回一个流
  • public static IntStream stream(int[] array)
  • public static LongStream stream(long[] array)
  • public static DoubleStream stream(double[] array)
1
2
3
4
5
6
7
8
9
10
11
@Test
public void test02(){
String[] arr = {"hello","world"};
Stream<String> stream = Arrays.stream(arr);
}

@Test
public void test03(){
int[] arr = {1,2,3,4,5};
IntStream stream = Arrays.stream(arr);
}

方式三:通过Stream的of()

可以调用Stream类静态方法 of(), 通过显示值创建一个流。它可以接收任意数量的参数。

  • public static Stream of(T… values) : 返回一个流
1
2
3
4
5
@Test
public void test04(){
Stream<Integer> stream = Stream.of(1,2,3,4,5);
stream.forEach(System.out::println);
}

方式四:创建无限流(了解)

可以使用静态方法 Stream.iterate() 和 Stream.generate(), 创建无限流。

  • 迭代
    public static Stream iterate(final T seed, final UnaryOperator f)

  • 生成
    public static Stream generate(Supplier s)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// 方式四:创建无限流
@Test
public void test05() {
// 迭代
// public static<T> Stream<T> iterate(final T seed, final
// UnaryOperator<T> f)
Stream<Integer> stream = Stream.iterate(0, x -> x + 2);
stream.limit(10).forEach(System.out::println);

// 生成
// public static<T> Stream<T> generate(Supplier<T> s)
Stream<Double> stream1 = Stream.generate(Math::random);
stream1.limit(10).forEach(System.out::println);
}

一系列中间操作

多个中间操作可以连接起来形成一个流水线,除非流水线上触发终止操作,否则中间操作不会执行任何的处理!而在终止操作时一次性全部处理,称为“惰性求值”。

1-筛选与切片

方 法 描 述
filter(Predicatep) 接收 Lambda , 从流中排除某些元素
distinct() 筛选,通过流所生成元素的 hashCode() 和 equals() 去除重复元素
limit(long maxSize) 截断流,使其元素不超过给定数量
skip(long n) 跳过元素,返回一个扔掉了前 n 个元素的流。
若流中元素不足 n 个,则返回一个空流。与 limit(n) 互补

2-映射

方法 描述
map(Function f) 接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。
mapToDouble(ToDoubleFunction f) 接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的 DoubleStream。
mapToInt(ToIntFunction f) 接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的 IntStream。
mapToLong(ToLongFunction f) 接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的 LongStream。
flatMap(Function f) 接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流

3-排序

方法 描述
sorted() 产生一个新流,其中按自然顺序排序
sorted(Comparator com) 产生一个新流,其中按比较器顺序排序

代码举例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
package com.atguigu.stream;

import org.junit.Test;

import java.util.Arrays;
import java.util.stream.Stream;

public class StreamMiddleOperate {
@Test
public void test01(){
//1、创建Stream
Stream<Integer> stream = Stream.of(1,2,3,4,5,6);

//2、加工处理
//过滤:filter(Predicate p)
//把里面的偶数拿出来
/*
* filter(Predicate p)
* Predicate是函数式接口,抽象方法:boolean test(T t)
*/
stream = stream.filter(t -> t%2==0);

//3、终结操作:例如:遍历
stream.forEach(System.out::println);
}
@Test
public void test02(){
Stream.of(1,2,3,4,5,6)
.filter(t -> t%2==0)
.forEach(System.out::println);
}
@Test
public void test03(){
Stream.of(1,2,3,4,5,6,2,2,3,3,4,4,5)
.distinct()
.forEach(System.out::println);
}
@Test
public void test04(){
Stream.of(1,2,3,4,5,6,2,2,3,3,4,4,5)
.limit(3)
.forEach(System.out::println);
}
@Test
public void test05(){
Stream.of(1,2,2,3,3,4,4,5,2,3,4,5,6,7)
.distinct() //(1,2,3,4,5,6,7)
.filter(t -> t%2!=0) //(1,3,5,7)
.limit(3)
.forEach(System.out::println);
}
@Test
public void test06(){
Stream.of(1,2,3,4,5,6,2,2,3,3,4,4,5)
.skip(5)
.forEach(System.out::println);
}
@Test
public void test07(){
Stream.of(1,2,3,4,5,6,2,2,3,3,4,4,5)
.skip(5)
.distinct()
.filter(t -> t%3==0)
.forEach(System.out::println);
}
@Test
public void test08(){
long count = Stream.of(1,2,3,4,5,6,2,2,3,3,4,4,5)
.distinct()
.peek(System.out::println) //Consumer接口的抽象方法 void accept(T t)
.count();
System.out.println("count="+count);
}
@Test
public void test09(){
//希望能够找出前三个最大值,前三名最大的,不重复
Stream.of(11,2,39,4,54,6,2,22,3,3,4,54,54)
.distinct()
.sorted((t1,t2) -> -Integer.compare(t1, t2))//Comparator接口 int compare(T t1, T t2)
.limit(3)
.forEach(System.out::println);
}
@Test
public void test10(){
Stream.of(1,2,3,4,5)
.map(t -> t+=1)//Function<T,R>接口抽象方法 R apply(T t)
.forEach(System.out::println);
}
@Test
public void test11(){
String[] arr = {"hello","world","java"};

Arrays.stream(arr)
.map(t->t.toUpperCase())
.forEach(System.out::println);
}
@Test
public void test12(){
String[] arr = {"hello","world","java"};
Arrays.stream(arr)
.flatMap(t -> Stream.of(t.split("|")))//Function<T,R>接口抽象方法 R apply(T t) 现在的R是一个Stream
.forEach(System.out::println);
}
}

终止操作

  • 终端操作会从流的流水线生成结果。其结果可以是任何不是流的值,例如:List、Integer,甚至是 void 。

  • 流进行了终止操作后,不能再次使用。

1-匹配与查找

方法 描述
allMatch(Predicate p) 检查是否匹配所有元素
anyMatch(Predicate p) 检查是否至少匹配一个元素
noneMatch(Predicate p) 检查是否没有匹配所有元素
findFirst() 返回第一个元素
findAny() 返回当前流中的任意元素
count() 返回流中元素总数
max(Comparator c) 返回流中最大值
min(Comparator c) 返回流中最小值
forEach(Consumer c) 内部迭代(使用 Collection 接口需要用户去做迭代,称为外部迭代。
相反,Stream API 使用内部迭代——它帮你把迭代做了)

2-归约

方法 描述
reduce(T identity, BinaryOperator b) 可以将流中元素反复结合起来,得到一个值。返回 T
reduce(BinaryOperator b) 可以将流中元素反复结合起来,得到一个值。返回 Optional

备注:map 和 reduce 的连接通常称为 map-reduce 模式,因 Google 用它来进行网络搜索而出名。

3-收集

方 法 描 述
collect(Collector c) 将流转换为其他形式。接收一个 Collector接口的实现,
用于给Stream中元素做汇总的方法

Collector 接口中方法的实现决定了如何对流执行收集的操作(如收集到 List、Set、Map)。

另外, Collectors 实用类提供了很多静态方法,可以方便地创建常见收集器实例,具体方法与实例如下表:

方法 返回类型 作用
toList Collector> 把流中元素收集到List
1
List<Employee> emps= list.stream().collect(Collectors.toList());
方法 返回类型 作用
toSet Collector> 把流中元素收集到Set
1
Set<Employee> emps= list.stream().collect(Collectors.toSet());
方法 返回类型 作用
toCollection Collector 把流中元素收集到创建的集合
1
Collection<Employee> emps =list.stream().collect(Collectors.toCollection(ArrayList::new));
方法 返回类型 作用
counting Collector 计算流中元素的个数
1
long count = list.stream().collect(Collectors.counting());
方法 返回类型 作用
summingInt Collector 对流中元素的整数属性求和
1
int total=list.stream().collect(Collectors.summingInt(Employee::getSalary));
方法 返回类型 作用
averagingInt Collector 计算流中元素Integer属性的平均值
1
double avg = list.stream().collect(Collectors.averagingInt(Employee::getSalary));
方法 返回类型 作用
summarizingInt Collector 收集流中Integer属性的统计值。如:平均值
1
int SummaryStatisticsiss= list.stream().collect(Collectors.summarizingInt(Employee::getSalary));
方法 返回类型 作用
joining Collector 连接流中每个字符串
1
String str= list.stream().map(Employee::getName).collect(Collectors.joining());
方法 返回类型 作用
maxBy Collector> 根据比较器选择最大值
1
Optional<Emp>max= list.stream().collect(Collectors.maxBy(comparingInt(Employee::getSalary)));
方法 返回类型 作用
minBy Collector> 根据比较器选择最小值
1
Optional<Emp> min = list.stream().collect(Collectors.minBy(comparingInt(Employee::getSalary)));
方法 返回类型 作用
reducing Collector> 从一个作为累加器的初始值开始,利用BinaryOperator与流中元素逐个结合,从而归约成单个值
1
int total=list.stream().collect(Collectors.reducing(0, Employee::getSalar, Integer::sum));
方法 返回类型 作用
collectingAndThen Collector 包裹另一个收集器,对其结果转换函数
1
int how= list.stream().collect(Collectors.collectingAndThen(Collectors.toList(), List::size));
方法 返回类型 作用
groupingBy Collector>> 根据某属性值对流分组,属性为K,结果为V
1
Map<Emp.Status, List<Emp>> map= list.stream().collect(Collectors.groupingBy(Employee::getStatus));
方法 返回类型 作用
partitioningBy Collector>> 根据true或false进行分区
1
Map<Boolean,List<Emp>> vd = list.stream().collect(Collectors.partitioningBy(Employee::getManage));

举例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
package com.atguigu.stream;

import java.util.List;
import java.util.Optional;
import java.util.stream.Collectors;
import java.util.stream.Stream;

import org.junit.Test;

public class StreamEndding {
@Test
public void test01(){
Stream.of(1,2,3,4,5)
.forEach(System.out::println);
}
@Test
public void test02(){
long count = Stream.of(1,2,3,4,5)
.count();
System.out.println("count = " + count);
}
@Test
public void test03(){
boolean result = Stream.of(1,3,5,7,9)
.allMatch(t -> t%2!=0);
System.out.println(result);
}
@Test
public void test04(){
boolean result = Stream.of(1,3,5,7,9)
.anyMatch(t -> t%2==0);
System.out.println(result);
}
@Test
public void test05(){
Optional<Integer> opt = Stream.of(1,3,5,7,9).findFirst();
System.out.println(opt);
}
@Test
public void test06(){
Optional<Integer> opt = Stream.of(1,2,3,4,5,7,9)
.filter(t -> t%3==0)
.findFirst();
System.out.println(opt);
}
@Test
public void test07(){
Optional<Integer> opt = Stream.of(1,2,4,5,7,8)
.filter(t -> t%3==0)
.findFirst();
System.out.println(opt);
}
@Test
public void test08(){
Optional<Integer> max = Stream.of(1,2,4,5,7,8)
.max((t1,t2) -> Integer.compare(t1, t2));
System.out.println(max);
}
@Test
public void test09(){
Integer reduce = Stream.of(1,2,4,5,7,8)
.reduce(0, (t1,t2) -> t1+t2);//BinaryOperator接口 T apply(T t1, T t2)
System.out.println(reduce);
}
@Test
public void test10(){
Optional<Integer> max = Stream.of(1,2,4,5,7,8)
.reduce((t1,t2) -> t1>t2?t1:t2);//BinaryOperator接口 T apply(T t1, T t2)
System.out.println(max);
}
@Test
public void test11(){
List<Integer> list = Stream.of(1,2,4,5,7,8)
.filter(t -> t%2==0)
.collect(Collectors.toList());

System.out.println(list);
}
}


新语法结构

Java的REPL工具: jShell命令

JDK9的新特性

Java 终于拥有了像Python 和 Scala 之类语言的REPL工具(交互式编程环境,read - evaluate - print - loop):jShell。以交互式的方式对语句和表达式进行求值。即写即得快速运行

利用jShell在没有创建类的情况下,在命令行里直接声明变量,计算表达式,执行语句。无需跟人解释”public static void main(String[] args)”这句”废话”。


异常处理之try-catch资源关闭

JDK7的新特性

在try的后面可以增加一个(),在括号中可以声明流对象并初始化。try中的代码执行完毕,会自动把流对象释放,就不用写finally了。

格式:

1
2
3
4
5
6
7
try(资源对象的声明和初始化){
业务逻辑代码,可能会产生异常
}catch(异常类型1 e){
处理异常代码
}catch(异常类型2 e){
处理异常代码
}

说明:

1、在try()中声明的资源,无论是否发生异常,无论是否处理异常,都会自动关闭资源对象,不用手动关闭了。

2、这些资源实现类必须实现AutoCloseable或Closeable接口,实现其中的close()方法。Closeable是AutoCloseable的子接口。Java7几乎把所有的“资源类”(包括文件IO的各种类、JDBC编程的Connection、Statement等接口…)都进行了改写,改写后资源类都实现了AutoCloseable或Closeable接口,并实现了close()方法。

3、写到try()中的资源类的变量默认是final声明的,不能修改。

JDK9的新特性

try的前面可以定义流对象,try后面的()中可以直接引用流对象的名称。在try代码执行完毕后,流对象也可以释放掉,也不用写finally了。

格式:

1
2
3
4
5
6
7
A a = new A();
B b = new B();
try(a;b){
可能产生的异常代码
}catch(异常类名 变量名){
异常处理的逻辑
}

举例:

1
2
3
4
5
6
7
8
9
10
11
12
@Test
public void test04() {
InputStreamReader reader = new InputStreamReader(System.in);
OutputStreamWriter writer = new OutputStreamWriter(System.out);
try (reader; writer) {
//reader是final的,不可再被赋值
// reader = null;

} catch (IOException e) {
e.printStackTrace();
}
}


局部变量类型推断

JDK 10的新特性

局部变量的显示类型声明,常常被认为是不必须的,给一个好听的名字反而可以很清楚的表达出下面应该怎样继续。本新特性允许开发人员省略通常不必要的局部变量类型声明,以增强Java语言的体验性、可读性。

  • 使用举例
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
//1.局部变量的实例化
var list = new ArrayList<String>();

var set = new LinkedHashSet<Integer>();

//2.增强for循环中的索引
for (var v : list) {
System.out.println(v);
}

//3.传统for循环中
for (var i = 0; i < 100; i++) {
System.out.println(i);
}

//4. 返回值类型含复杂泛型结构
var iterator = set.iterator();
//Iterator<Map.Entry<Integer, Student>> iterator = set.iterator();

  • 不适用场景
    • 声明一个成员变量
    • 声明一个数组变量,并为数组静态初始化(省略new的情况下)
    • 方法的返回值类型
    • 方法的参数类型
    • 没有初始化的方法内的局部变量声明
    • 作为catch块中异常类型
    • Lambda表达式中函数式接口的类型
    • 方法引用中函数式接口的类型


instanceof的模式匹配

JDK14中预览特性:

instanceof 模式匹配通过提供更为简便的语法,来提高生产力。有了该功能,可以减少Java程序中显式强制转换的数量,实现更精确、简洁的类型安全的代码。

Java 14之前旧写法:

1
2
3
4
5
6
if(obj instanceof String){
String str = (String)obj; //需要强转
.. str.contains(..)..
}else{
...
}

Java 14新特性写法:

1
2
3
4
5
if(obj instanceof String str){
.. str.contains(..)..
}else{
...
}

举例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
/**
* instanceof的模式匹配(预览)
*
* @author shkstart
* @create 上午 11:32
*/
public class Feature01 {
@Test
public void test1(){

Object obj = new String("hello,Java14");
obj = null;//在使用null 匹配instanceof 时,返回都是false.
if(obj instanceof String){
String str = (String) obj;
System.out.println(str.contains("Java"));
}else{
System.out.println("非String类型");
}

//举例1:
if(obj instanceof String str){ //新特性:省去了强制类型转换的过程
System.out.println(str.contains("Java"));
}else{
System.out.println("非String类型");
}
}
}

// 举例2
class InstanceOf{

String str = "abc";

public void test(Object obj){

if(obj instanceof String str){//此时的str的作用域仅限于if结构内。
System.out.println(str.toUpperCase());
}else{
System.out.println(str.toLowerCase());
}

}

}

//举例3:
class Monitor{
private String model;
private double price;

// public boolean equals(Object o){
// if(o instanceof Monitor other){
// if(model.equals(other.model) && price == other.price){
// return true;
// }
// }
// return false;
// }


public boolean equals(Object o){
return o instanceof Monitor other && model.equals(other.model) && price == other.price;
}

}


switch表达式

传统switch声明语句的弊端:

  • 匹配是自上而下的,如果忘记写break,后面的case语句不论匹配与否都会执行; —->case穿透
  • 所有的case语句共用一个块范围,在不同的case语句定义的变量名不能重复;
  • 不能在一个case里写多个执行结果一致的条件;
  • 整个switch不能作为表达式返回值;

JDK12中预览特性:

  • Java 12将会对switch声明语句进行扩展,使用case L ->来替代以前的break;,省去了 break 语句,避免了因少写 break 而出错。

  • 同时将多个 case 合并到一行,显得简洁、清晰,也更加优雅的表达逻辑分支。

  • 为了保持兼容性,case 条件语句中依然可以使用字符: ,但是同一个 switch 结构里不能混用->: ,否则编译错误。

1
2
3
4
5
6
7
8
9
10
11
12
public class SwitchTest2 {
public static void main(String[] args) {
Fruit fruit = Fruit.GRAPE;
int numberOfLetters = switch(fruit){
case PEAR -> 4;
case APPLE,MANGO,GRAPE -> 5;
case ORANGE,PAPAYA -> 6;
default -> throw new IllegalStateException("No Such Fruit:" + fruit);
};
System.out.println(numberOfLetters);
}
}

JDK13中二次预览特性:

JDK13中引入了yield语句,用于返回值。这意味着,switch表达式(返回值)应该使用yield,switch语句(不返回值)应该使用break。

yield和return的区别在于:return会直接跳出当前循环或者方法,而yield只会跳出当前switch块。

在JDK13中:

1
2
3
4
5
6
7
8
9
10
11
12
@Test
public void testSwitch2(){
String x = "3";
int i = switch (x) {
case "1" -> 1;
case "2" -> 2;
default -> {
yield 3;
}
};
System.out.println(i);
}

或者

1
2
3
4
5
6
7
8
9
10
11
12
13
@Test
public void testSwitch3() {
String x = "3";
int i = switch (x) {
case "1":
yield 1;
case "2":
yield 2;
default:
yield 3;
};
System.out.println(i);
}


文本块

现实问题:

在Java中,通常需要使用String类型表达HTML,XML,SQL或JSON等格式的字符串,在进行字符串赋值时需要进行转义和连接操作,然后才能编译该代码,这种表达方式难以阅读并且难以维护。

JDK13的新特性

使用”””作为文本块的开始符和结束符,在其中就可以放置多行的字符串,不需要进行任何转义。因此,文本块将提高Java程序的可读性和可写性。

基本使用:

1
2
3
4
5
"""
line1
line2
line3
"""

相当于:

1
"line1\nline2\nline3\n"

或者一个连接的字符串:

1
2
3
"line1\n" +
"line2\n" +
"line3\n"

如果字符串末尾不需要行终止符,则结束分隔符可以放在最后一行内容上。例如:

1
2
3
4
"""
line1
line2
line3"""

相当于

1
"line1\nline2\nline3"

文本块可以表示空字符串,但不建议这样做,因为它需要两行源代码:

1
2
String empty = """
""";

JDK14中二次预览特性

JDK14的版本主要增加了两个escape sequences,分别是\ 取消换行\s 空格


Record

record 是一种全新的类型,它本质上是一个 final 类,同时所有的属性都是 final 修饰,它会自动编译出 public gethashcodeequalstoString、构造器等结构,减少了代码编写量。

具体来说:当你用record 声明一个类时,该类将自动拥有以下功能:

  • 获取成员变量的简单方法,比如例题中的 name() 和 partner() 。注意区别于我们平常getter()的写法。
  • 一个 equals 方法的实现,执行比较时会比较该类的所有成员属性。
  • 重写 hashCode() 方法。
  • 一个可以打印该类所有成员属性的 toString() 方法。
  • 只有一个构造方法。

此外:

  • 还可以在record声明的类中定义静态字段、静态方法、构造器或实例方法。
  • 不能在record声明的类中定义实例字段;类不能声明为abstract;不能声明显式的父类等。

举例:

1
2
public record Dog(String name, Integer age) {
}
1
2
3
4
5
6
7
8
9
10
11
public class Java14Record {

public static void main(String[] args) {
Dog dog1 = new Dog("牧羊犬", 1);
Dog dog2 = new Dog("田园犬", 2);
Dog dog3 = new Dog("哈士奇", 3);
System.out.println(dog1);
System.out.println(dog2);
System.out.println(dog3);
}
}

记录不适合哪些场景

record的设计目标是提供一种将数据建模为数据的好方法。它也不是 JavaBeans 的直接替代品,因为record的方法不符合 JavaBeans 的 get 标准。另外 JavaBeans 通常是可变的,而记录是不可变的。尽管它们的用途有点像,但记录并不会以某种方式取代 JavaBean。


密封类

背景:

在 Java 中如果想让一个类不能被继承和修改,这时我们应该使用 final 关键字对类进行修饰。不过这种要么可以继承,要么不能继承的机制不够灵活,有些时候我们可能想让某个类可以被某些类型继承,但是又不能随意继承,是做不到的。Java 15 尝试解决这个问题,引入了 sealed 类,被 sealed 修饰的类可以指定子类。这样这个类就只能被指定的类继承。

JDK15的预览特性:

通过密封的类和接口来限制超类的使用,密封的类和接口限制其它可能继承或实现它们的其它类或接口。

具体使用:

  • 使用修饰符sealed,可以将一个类声明为密封类。密封的类使用保留关键字permits列出可以直接扩展(即extends)它的类。
  • sealed 修饰的类的机制具有传递性,它的子类必须使用指定的关键字进行修饰,且只能是 finalsealednon-sealed 三者之一。

举例:

1
2
3
4
5
6
7
8
9
10
11
12
package com.atguigu.java;
public abstract sealed class Shape permits Circle, Rectangle, Square {...}

public final class Circle extends Shape {...} //final表示Circle不能再被继承了

public sealed class Rectangle extends Shape permits TransparentRectangle, FilledRectangle {...}

public final class TransparentRectangle extends Rectangle {...}

public final class FilledRectangle extends Rectangle {...}

public non-sealed class Square extends Shape {...} //non-sealed表示可以允许任何类继承


其它变化

Optional类

JDK8的新特性

到目前为止,臭名昭著的空指针异常是导致Java应用程序失败的最常见原因。以前,为了解决空指针异常,Google在著名的Guava项目引入了Optional类,通过检查空值的方式避免空指针异常。受到Google的启发,Optional类已经成为Java 8类库的一部分。

Optional<T> 类(java.util.Optional) 是一个容器类,它可以保存类型T的值,代表这个值存在。或者仅仅保存null,表示这个值不存在。如果值存在,则isPresent()方法会返回true,调用get()方法会返回该对象。

Optional提供很多有用的方法,这样我们就不用显式进行空值检测。

  • 创建Optional类对象的方法:
  • static Optional empty() :用来创建一个空的Optional实例

    • static Optional of(T value) :用来创建一个Optional实例,value必须非空
    • static <T> Optional<T> ofNullable(T value) :用来创建一个Optional实例,value可能是空,也可能非空
  • 判断Optional容器中是否包含对象:

    • boolean isPresent() : 判断Optional容器中的值是否存在
    • void ifPresent(Consumer<? super T> consumer) :判断Optional容器中的值是否存在,如果存在,就对它进行Consumer指定的操作,如果不存在就不做
  • 获取Optional容器的对象:

  • T get(): 如果调用对象包含值,返回该值。否则抛异常。T get()与of(T value)配合使用

  • T orElse(T other):orElse(T other) 与ofNullable(T value)配合使用,如果Optional容器中非空,就返回所包装值,如果为空,就用orElse(T other)other指定的默认值(备胎)代替

  • T orElseGet(Supplier<? extends T> other) :如果Optional容器中非空,就返回所包装值,如果为空,就用Supplier接口的Lambda表达式提供的值代替

  • T orElseThrow(Supplier<? extends X> exceptionSupplier) :如果Optional容器中非空,就返回所包装值,如果为空,就抛出你指定的异常类型代替原来的NoSuchElementException

举例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import java.util.Optional;

import org.junit.Test;

public class TestOptional {
@Test
public void test1(){
String str = "hello";
Optional<String> opt = Optional.of(str);
System.out.println(opt);
}
@Test
public void test2(){
Optional<String> opt = Optional.empty();
System.out.println(opt);
}
@Test
public void test3(){
String str = null;
Optional<String> opt = Optional.ofNullable(str);
System.out.println(opt);
}
@Test
public void test4(){
String str = "hello";
Optional<String> opt = Optional.of(str);

String string = opt.get();
System.out.println(string);
}
@Test
public void test5(){
String str = null;
Optional<String> opt = Optional.ofNullable(str);
// System.out.println(opt.get());//java.util.NoSuchElementException: No value present
}
@Test
public void test6(){
String str = "hello";
Optional<String> opt = Optional.ofNullable(str);
String string = opt.orElse("atguigu");
System.out.println(string);
}
@Test
public void test7(){
String str = null;
Optional<String> opt = Optional.ofNullable(str);
String string = opt.orElseGet(String::new);
System.out.println(string);
}
@Test
public void test8(){
String str = null;
Optional<String> opt = Optional.ofNullable(str);
String string = opt.orElseThrow(()->new RuntimeException("值不存在"));
System.out.println(string);
}
@Test
public void test9(){
String str = "Hello1";
Optional<String> opt = Optional.ofNullable(str);
//判断是否是纯字母单词,如果是,转为大写,否则保持不变
String result = opt.filter(s->s.matches("[a-zA-Z]+"))
.map(s -> s.toUpperCase()).orElse(str);
System.out.println(result);
}
}

这是JDK9-11的新特性

新增方法 描述 新增的版本
boolean isEmpty() 判断value是否为空 JDK 11
ifPresentOrElse(Consumer<? super T> action, Runnable emptyAction) value非空,执行参数1功能;如果value为空,执行参数2功能 JDK 9
Optional or(Supplier<? extends Optional<? extends T>> supplier) value非空,返回对应的Optional;value为空,返回形参封装的Optional JDK 9
Stream stream() value非空,返回仅包含此value的Stream;否则,返回一个空的Stream JDK 9
T orElseThrow() value非空,返回value;否则抛异常NoSuchElementException JDK 10


GC方面新特性

G1 GC

JDK9以后默认的垃圾回收器是G1GC。

JDK10 : 为G1提供并行的Full GC

G1最大的亮点就是可以尽量的避免full gc。但毕竟是“尽量”,在有些情况下,G1就要进行full gc了,比如如果它无法足够快的回收内存的时候,它就会强制停止所有的应用线程然后清理。

在Java10之前,一个单线程版的标记-清除-压缩算法被用于full gc。为了尽量减少full gc带来的影响,在Java10中,就把之前的那个单线程版的标记-清除-压缩的full gc算法改成了支持多个线程同时full gc。这样也算是减少了full gc所带来的停顿,从而提高性能。

你可以通过-XX:ParallelGCThreads参数来指定用于并行GC的线程数。

JDK12:可中断的 G1 Mixed GC

JDK12:增强G1,自动返回未用堆内存给操作系统

henandoah GC

JDK12:Shenandoah GC:低停顿时间的GC

Shenandoah 垃圾回收器是 Red Hat 在 2014 年宣布进行的一项垃圾收集器研究项目 Pauseless GC 的实现,旨在针对 JVM 上的内存收回实现低停顿的需求

ZGC

JDK11:引入革命性的 ZGC

ZGC,这应该是JDK11最为瞩目的特性,没有之一。

ZGC是一个并发、基于region、压缩型的垃圾收集器。

ZGC的设计目标是:支持TB级内存容量,暂停时间低(<10ms),对整个程序吞吐量的影响小于15%。 将来还可以扩展实现机制,以支持不少令人兴奋的功能,例如多层堆(即热对象置于DRAM和冷对象置于NVMe闪存),或压缩堆。

JDK13:ZGC:将未使用的堆内存归还给操作系统

JDK14:ZGC on macOS和windows

JDK15:ZGC 功能转正

JDK16:ZGC 并发线程处理